威尼斯vns12356就是通常所说的MAC地址(物理地址)

当前位置:威尼斯vns12356 > 威尼斯vns12356 > 威尼斯vns12356就是通常所说的MAC地址(物理地址)
作者: 威尼斯vns12356|来源: http://www.hjarntorget.net|栏目:威尼斯vns12356

文章关键词:威尼斯vns12356,数据链路层

  IEEE于1980年2月成立了局域网标准委员会(简称IEEE802委员会),专门从事局域网标准化工作,并制定了IEEE802标准。802标准所描述的局域网参考模型只对应OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路层LLC子层和介质访问控制MAC子层.IEEE802委员会为局域网制订了一系列标准,统称为802标准。其中IEEE802.2LAN标准定义了逻辑链路控制LLC子层的功能与服务,并且是IEEE802.3,IEEE802.4和IEEE802.5等标准的基标准。

  LLC负责识别网络层协议,然后对它们进行封装。LLC报头告诉数据链路层一旦帧被接收到时,应当对数据包做何处理。它的工作原理是这样的:

  主机接收到帧并查看其LLC报头,以找到数据包的目的地,比如说,在网际层的IP协议。LLC子层也可以提供流量控制并控制比特流的排序。

  LLC是在高级数据链路控制(HDLC:High-LevelData-LinkControl)的基础上发展起来的,并使用了HDLC规范的子集。LLC定义了三种数据通信操作类型:

  类型2:面向连接。该方式提供了四种服务:连接的建立、确认和数据到达响应、差错恢复(通过请求重发接收到的错误数据实现)以及滑动窗口(系数:128)。滑动窗口用来提高数据传输速率。

  类型1的LLC无连接服务中规定了一种静态帧格式,并允许在其上运行网络协议。使用传输层协议的网络协议通常会使用服务类型1方式。威尼斯vns12356类型2的LLC面向连接服务支持可靠数据传输,运用于不需要调用网络层和传输层协议的局域网环境。

  介质访问控制是解决当局域网中共用信道的使用产生竞争时,如何分配信道的使用权问题。

  逻辑链路LogicalLinks是实际电路或逻辑电路上交换通信信息的两个端系统之间的一种协议驱动通信会话。协议栈定义了两个系统在某种介质上的通信。在协议栈低层定义可用的多种不同类型的通信协议,如局域网络(LAN)、城域网(MAN)和象X.25或帧中继这样的分组交换网络。逻辑链路在物理链路(可以是铜线、光纤或其他介质)上的两个通信系统之间形成。根据OSI协议模型,这些逻辑链路只在物理层以上存在。你可以认为逻辑链路是存在于网络两个末断系统间的线路。

  面向连接的服务为了保证可靠的通信,需要建立逻辑线路,但在两个端系统间要维持会话。威尼斯vns12356

  面向需要应答连接的服务分组传输并有返回信号的逻辑线路。这种服务产生更大的开销,但更加可靠。

  OSI协议栈中的数据链路层可进一步细分为较低的介质访问控制(MAC)子层和较高的逻辑链路控制(LLC)子层。当它接收到一个分组后,它从MAC子层向上传送。如果有多个网络和设备相连,LLC层可能将分组送给另一个网络。例如,在一个NetWare服务器上,你可能既安装了以太网络适配器又安装了令牌网络适配器,NetWare自动地在连接到适配器的网络间桥接,这样原来在以太网上的分组就可以传送到令牌网上的目的地了,LLC层就象网络段间的交换或链路中继,威尼斯vns12356它将以太网的帧重装成令牌环网的帧。

  MAC子层负责把物理层的“0”、“1”比特流组建成帧,并通过帧尾部的错误校验信息进行错误校验;提供对共享介质的访问方法,包括以太网的带冲突检测的载波侦听多路访问(CSMA/CD)、令牌环(TokenRing)、光纤分布式数据接口(FDDI)等。

  MAC子层分配单独的局域网地址,就是通常所说的MAC地址(物理地址)。MAC子层将目标计算机的物理地址添加到数据帧上,当此数据帧传递到对端的MAC子层后,它检查该地址是否与自己的地址相匹配,如果帧中的地址与自己的地址不匹配,就将这一帧抛弃;如果相匹配,就将它发送到上一层中。

  MAC(MediaAccessControl,媒体访问控制)子层定义了数据包怎样在介质上进行传输。在共享同一个带宽的链路中,对连接介质的访问是“先来先服务”的。物理寻址在此处被定义,逻辑拓扑(信号通过物理拓扑的路径)也在此处被定义。线路控制、出错通知(不纠正)、帧的传递顺序和可选择的流量控制也在这一子层实现。

  注解:该协议位于OSI七层协议中数据链路层,数据链路层分为上层LLC(逻辑链路控制),和下层的MAC(媒体访问控制),MAC主要负责控制与连接物理层的物理介质。在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层;在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC(逻辑链路控制)层。

  应用:不管是在传统的有线局域网(LAN)中还是在目前流行的无线局域网(WLAN)中,MAC协议都被广泛地应用。在传统局域网中,各种传输介质(铜缆、光线等)的物理层对应到相应的MAC层,目前普遍使用的网络采用的是IEEE802.3的MAC层标准,采用CSMA/CD访问控制方式;而在无线局域网中,MAC所对应的标准为IEEE802.11,其工作方式采用DCF(分布控制)和PCF(中心控制)。

  逻辑链路(LogicalLinks)是实际电路或逻辑电路上交换通信信息的两个端系统之间的一种协议驱动通信会话。协议栈定义了两个系统在某种介质上的通信。在协议栈低层定义可用的多种不同类型的通信协议,如局域网络(LAN)、城域网(MAN)和象X.25或帧中继这样的分组交换网络。逻辑链路在物理链路(可以是铜线、光纤或其他介质)上的两个通信系统之间形成。根据OSI协议模型,这些逻辑链路只在物理层以上存在。你可以认为逻辑链路是存在于网络两个末断系统间的线路。

  MAC子层的主要功能包括数据帧的封装/卸装,帧的寻址和识别,帧的接收与发送,链路的管理,帧的差错控制等。MAC子层的存在屏蔽了不同物理链路种类的差异性。

  摘 要:车载充电机是新能源汽车动力单元的核心部位,又是与电网电压相接的设备,高效、高功率因数、小体积是其必须具备的功能,为了实现高效率和宽输出电压范围调节,DC/DC变换采用半桥三电平LLC谐振双向直流变换器拓扑电路,以提高充电机的效率和功率因数,通过描述其工作原理与特性设计元件参数与选型,并通过仿真验证高功率、宽电压范围输出的可行性。0 引言新能源汽车的推广关键环节——电动汽车充电机成为其发展的瓶颈,如何快速高效地为电动汽车充电、解决汽车的续航里程,是提升电动汽车快速发展的重中之重。在能源紧缺的环境下,设计一款节能、高效、大功率密度的充电机是电动汽车行业的最大挑战。为了提高整机的效率和大功率的设计要求,本设计研究在文献

  谐振型变换器在新能源汽车充电机的设计研究 /

  是德科技的DSOX1204A/G4通道示波器补充了 1000X 系列示波器家族1000X 系列数字示波器是是德科技入门级示波器DSOX1204A/G 4 通道示波器虽然定位为入门级,但功能丰富,其具备最高2GSa/s采样率和最高200MHz带宽,50000个波形每秒的捕获率,除了值得信赖的示波器功能外,还配有先进的分析工具,如频率响应分析、模板测试、协议解码、FFT和分段存储,获得更深入的测试结果。▲图1 DSOX1204G示波器这些高端的分析功能再加上是德科技60年示波器研发底蕴,可以帮助中小型企业、学生和爱好者,在有限的预算条件下完成各种产品测试和仪器学习。LLC 电源实测

  测试上的用途分析和介绍 /

  致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出英飞凌ICL5101 集成PFC+LLC 的LED商业照明方案。该解决方案有助于帮助客户进一步降低系统成本,旨在满足高性能、高可靠性系统的商业照明应用的需求。其典型应用包括:室内及室外LED 照明、高/低棚照明、街道照明、停车场及天棚照明、办公室照明、零售以及商店照明。大联大品佳代理的英飞凌LED谐振控制器ICL5101,内部集成了PFC和LLC:PFC级工作在DCM模式和CRCM,在低负载状态下极为稳定;内部集成驱动,可以做到更高的功率密度;ICL5101频率参数由简单的电阻调整,更加方便设计计算和参数控制;支持全面的保护功能,包括短路、过压、过载

  新产品包含有集成式磁体,更易于集成。美国新罕布什尔州曼彻斯特市 – 服务于汽车、工业和消费/计算等高增长应用市场的高性能电源和传感器IC领导厂商Allegro MicroSystems, LLC(以下简称Allegro)新推一款高精度、集成背磁体、可编程差分式霍尔效应传感器IC ATS344。这款新器件集成了双线电流模式PWM输出,以帮助最大限度地减少远程传感器的引脚数量。它还集成有片上EEPROM技术,能够支持多达100次读/写循环,可用于灵活的下线非常适合于要求长行程(》 5mm)线性运动高分辨率检测的汽车应用。集成式的反向偏置磁体大大简化了客户的封装,只需要一个铁质目标即可

  美国新罕布什尔州曼彻斯特市 – 服务于汽车、工业和消费/计算等高增长应用市场的高性能电源和传感器IC领导厂商Allegro MicroSystems, LLC(以下简称Allegro)新推一款高精度、集成背磁体、可编程差分式霍尔效应传感器IC ATS344。这款新器件集成了双线电流模式PWM输出,以帮助最大限度地减少远程传感器的引脚数量。它还集成有片上EEPROM技术,能够支持多达100次读/写循环,可用于灵活的下线非常适合于要求长行程( 5mm)线性运动高分辨率检测的汽车应用。集成式的反向偏置磁体大大简化了客户的封装,只需要一个铁质目标即可进行检测。ATS344采用无铅3引脚SP封装

  发布反向偏置差分式线性霍尔传感器IC /

  摘要近来, LLC拓扑以其高效,高功率密度受到广大电源设计工程师的青睐,但是这种软开关拓扑对MOSFET的要求却超过了以往任何一种硬开关拓扑。特别是在电源启机,动态负载,过载,短路等情况下。CoolMOS 以其快恢复体二极管,低Qg 和Coss能够完全满足这些需求并大大提升电源系统的可靠性。长期以来, 提升电源系统功率密度,效率以及系统的可靠性一直是研发人员面临的重大课题。 提升电源的开关频率是其中的方法之一, 但是频率的提升会影响到功率器件的开关损耗,使得提升频率对硬开关拓扑来说效果并不十分明显,硬开关拓扑已经达到了它的设计瓶颈。而此时,软开关拓扑,如LLC拓扑以其独具的特点受到广大设计工程师的追捧。但是… 这种拓扑却对功率器件

  Xilinx ISE Design Suite 10.x FPGA开发指南——DSP、嵌入式与高速传输篇

  MediaTek、瑞士电信、爱立信、OPPO联手助推5G SA发展进程

  Graphcore和Cirrascale发布Graphcloud,加速云计算创新

  Celeno联手Realtek推出支持Wi-Fi6/6E光纤网关解决方案

  PI LYTSwitch-6系列IC 让你了解不知道的秘密看专题赢好礼!

  站点相关:综合资讯其他技术下一代网络短距离无线基站与设施RF技术光通讯标准与协议物联网与云计算有线宽带

网友评论

我的2016年度评论盘点
还没有评论,快来抢沙发吧!